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LETTER TO THE EDITOR 

Does the absence of saturation preclude strong 
electron-phonon coupling? 

L V Meisel 
Research, Development and Engineering Center, Close Combat Armament Center, 
Benet Laboratories, Watervliet, NY 12189, USA 

Received 4 October 1988 

Abstract. Diffraction model calculations of electrical resistance for strong electron-phonon 
coupling in two- and three-dimensional alloys, incorporating Pippard-Ziman phonon in- 
effectiveness, are reported. It is shown that in an electron-phonon scattering based theory, 
although strong electron-phonon coupling is necessary, it is not a sufficient condition for the 
production of strong saturation in the normal-state resistivity. Thus, absence of saturation 
does not preclude strong electron-phonon coupling. 

Recently Gurvitch and Fiory [ 11 argued against phonon-mediated superconductivity in 
La, &3r0 175Cu04 (LSCO) and YBa,Cu,O, (YBCO). Their argument goes as follows: the 
previously known high-T, alloys (e.g., the A15 alloys), which have strong electron- 
phonon coupling, all display strong negative deviations from linearity, in the normal 
state resistivity Y(T) ,  referred to as saturation [2, 31. The normal-state resistivities of 
LSCO and YBCO are not saturated. Thus, one does not have strong electron-phonon 
coupling in LSCO and YBCO. 

Gurvitch and Fiory [ 11 further suggest that their arguments do not depend on specific 
models for resistivity saturation. Essentially, [ 11 contends that absence of saturation in 
the normal-state resistivity precludes strong electron-phonon coupling. This is a very 
interesting hypothesis, which deserves close scrutiny. Does the hypothesis hold in the 
three-dimensional case? Does the layered, essentially two-dimensional nature of the 
new superconductors vitiate the force of arguments based upon experience in three 
dimensional high- T, alloys? 

In order to provide some answers to these questions, the results of calculations of 
normal-state resistivity in two and three dimensions for a simple model, which contains 
the essential physics of the problem are presented. 

To obtain the simplest form of the diffraction model and to simplify the numerical 
procedure, we assume (i) spherical or circular Fermi surface, (ii) single-branch Debye 
phonon spectrum, (iii) constant scattering t-matrices, and (iv) a solid having a single ion 
type. 

These assumptions are incorporated into the diffraction model as described by Ziman 
[4], Faber [5] and Baym [6], generalised by incorporation of the Pippard-Ziman phonon 
ineffective principle [7] as articulated in [4]. 

The strength of the electron-phonon interaction is chosen to yield agreement with 
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the strong saturated normal-state resistivity of the A15 alloy, Nb3Sn3, for reasonable 
choices of other parameters. 

For purely normal scattering in the large electron mean free path 1 limit (i.e., no 
phonon ineffectiveness) in three dimensions, these assumptions yield standard Bloch- 
Griineisen theory. 

The diffraction model concepts employed have been developed and applied in a 
series of articles by Cote and Meisel [S-101. The implications of phonon ineffectiveness 
for degradation of T, in disordered superconductors [ll, 121 and for the Eliashberg 
function [13] have been discussed. Diffraction model calculations incorporating Pip- 
pard-Ziman phonon ineffectiveness have yielded good agreement with details of the 
temperature dependence of the electrical resistivity in amorphous metals [ 14-20]. Per- 
tinent reviews of many of the ideas employed in this work may be found in [21,22]. 

Following these procedures one obtains for the isochoric resistivity in the two dimen- 
sional case with e the electron charge and uF the Fermi velocity, the expression 

r( t )  = [ 4 / ( e ~ ~ ) ~ ]  J dyy2(1  - Y ~ ) - ' / ~  1 t (2kFy) 1 S'(2kFy , l )  

Y ( t )  [4 / (eU~)~]  (lfI2) I dyy2(1  - y 2 ) - " 2  S'(2k~y, 1). 

( la)  

(1b) 

0 
1 

0 

We refer to S'(K,  1) as the resistivity static structure factor for electron mean free path 
1. The resistivity static structure factor SI( K ,  1) with scalar argument K is equal to S'(K,  I) 
averaged over orientations of the scattering vector K ,  involves a sum (integral) over the 
phonon spectrum, and incorporates saturation effects. (The (0) notation implies an 
average value of 0 and, since we assume constant t-matrices, is redundant here.) 

The corresponding isochoric results in three dimensions are 
1 

r(t> = [3/(euF)2] Io d y y 3  k(2kFy)/2 S'(2kFy, 

Y(f) [3/(3uF)2] ( I d 2 )  1 d y y 3  S'(2kFy, I). 

P a )  

(2b) 
1 

0 

The resistivity static structure factor in perfectly crystalline alloys is expressed in 
terms of the phonon part of the Van Hove dynamical structure factor S ' ( K ,  $2) as 

S'(K,  1) = ! d Q  x n ( x )  S ' ( K ,  Q) P ( Q ,  1) (3a) 
--rr 

where for kB Boltzmann's constant and h Planck's constant, x = hQ/kBT,  n(x) = 
l/(exp(x) - 1) is the phonon occupation number, and P ( Q ,  1) is a factor included to 
describe saturation. Replacing P( Q, I )  by unity yields the standard expression for S ' ( K ) .  
(N.B., S ' ( K ,  Q)  appears because Bloch waves are not elastically scattered in perfect 
crystals.) The appropriate form for S 4 ( K ,  I> in three dimensions is 

d K  
S'(K, 1) = I j-- S'(K,  1). 

JG 

In the two-dimensional case, the integral is over ordinary angles and the denominator 
is 2n. 

The phonon part of the dynamical structure factor in Sham-Ziman approximation 
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[24] is 
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+ a(K  + 4 )  qQ + Q ( q J ) )  n(q, i ) l  (4) 

where the sum runs over phonon branches j and phonon wavevectors q,  e(q,  j )  is the 
j-branch polarisation vector at q,  Q(q,  j )  thej-branch phonon dispersion, and n(q , j )  = 
n ( x ) ,  defined above, for x = hQ(q, j ) / k B T ;  N the ion number density, M the ion mass, 
and a(k )  the geometric structure factor. For three-dimensional crystalline materials 

where the sum runs over reciprocal-lattice vectors G and Vo is the unit cell volume. In 
two dimensions one has (2n)’ and a two-dimensional &function. 

The function P ( Q ,  I )  describes saturation of the electron-phonon interaction. The 
form selected is based on the Pippard-Ziman phonon ineffectiveness principle [4, 71: 
‘Phonons whose wavelengths 2n/q exceed the electron mean free path I are ineffective 
electron scatterers.’ 

Good agreement with measured r( T)/r( e )  in amorphous metals, and the degradation 
of the superconducting critical temperature T, in disordered A15 superconductors has 
been obtained with sharp cut-off phonon ineffectiveness: 

where H ( x )  is the Heaviside function and for a Debye phonon spectrum 

where a is a representative lattice spacing, q D  is the Debye wavenumber, and QD is the 
Debye frequency. The form for the cut-off value Qc is chosen to completely cut off the 
electron-phonon interaction when the electron mean free path is equal to the lattice 
spacing a. 

Incorporating the approximations enumerated above, the resistivity static structure 
factor for electron mean free path I in three dimensions assumes the form 

(and similarly in two dimensions) where qD is the Debye wavenumber 

and H ( x )  is the Heaviside function again. The Heaviside function appears because for a 
Debye spectrum, the phonon wavenumber q does not exceed qD. 

We assume that there are six (equal in magnitude) smallest reciprocal-lattice vectors 
G(G = 2 n / a )  contributing Umklapp terms to the resistivity (and mass enhancement 
factor) in three dimensions, etc, and use the same constant t-matrix for normal and 
Umklapp scattering. 

Although not an essential element of the argument, we allow for residual resistivity 
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Figure 1. Normalised isochoric resistivity versus 
T/O for 2kF = 1.6qD in the three-dimensional 
case. (N.B. ,  shortest G = 1.612qDfor allfigures.) 
Values of a / / (3O)  are indicated. The full curve is 
for Nb,Sn from Woodard and Cody [3] for 8 = 

200 K.  

Figure 2. Normalised isochoric resistivity versus 
T/Ofor1(3O) = 1.5ain the two-dimensionalcase. 
Values of 2kF/qD are indicated. The straight line 
is a guide for the eye. 

as observed in LSCO, YBCO and Nb,Sn. The residual resistance is assumed to be due to a 
random distribution of defects, which produces constant terms in the geometrical struc- 
ture factor. A k-independent term in a(k)  engenders a weakly T-dependent term in the 
electrical resistivity, which is approximated as a T-independent part of Y( T )  here. 

As is customary, computed isochoric Y( T ) / Y (  e )  are compared with isobaric exper- 
imental measurements. As discussed, for example, by Mott and Jones [23] ,  for T > 8 

( Q / m ) l P  = (r(T)/O))Iv(1 + 2 w T )  

where a is the thermal expansion coefficient and y Gruneisen’s constant. For typical 
metals2ay = C-’. Although the correction is negligible in theA15 superconducting 
alloys, it can yield observable effects. 

The calculation of Y( T )  proceeds as follows. 

(i) values are selected for 2kF/G, the relative residual resistivity r (O) /r (30) ,  and for 

(ii) The integral in equation (2b )  or (3b )  is calculated at T = 38. 
(iii) The proportionality constant relating all (  T )  to the respective integrals when 

(iv) Then a/l (T)  is computed self consistently for a set of Tvalues. 

Figure 1 shows isochoric results computed in three dimensions. Parameters were 
chosen to approximate those for Nb3Sn: 2kF/G = 0.99, r (O) /r (30)  = 0.1. A variety of 
values were assumed for a / l (38 ) .  Representative results and, assuming 19 = 200 K,  the 
experimental resistivity curve for Nb3Sn of Woodard and Cody [3] are shown. The data 
fall about midway between the computed values obtained for a / l ( 3 e )  = i and 2. The 
data could be fit with either of these values of a/1(30)  if one changed 8 by about 10%; 
the data are also consistent with computed results for 8 = 200 K, 2kF/G = 0.93,  and 
a/l(36) = 3. The values of all in figure 1 are in the range suggested in [ l ]  for A15 alloys. 

a / q 3  e 1. 

combined with the residual resistivity part is computed. 
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Figure 3. Normalised isochoric resistivity ver- 
sus T / e  for 4 3 8 )  = 1 . 5 ~  in the three-dimen- 
sional case. The smooth curves pass through 
the same point set as the symbols and are used 
for clarity. Values of 2kF/qD are indicated. 

Figures 2 and 3 show results of calculations for a/1(38) = I, ~ ( 0 ) / ~ ( 3 8 )  = 0.1, and a 
selection of 2kF/G values in two and three dimensions, respectively. The shape sf the 
computed Y( T) /r (  8 )  versus Tcurves is strongly dependent on2kF/G. The least curvature 
is obtained in both figures at 2kF/G = 0.6. Although a l l  values along all the curves in 
figures 2 and 3 are large, of the order appropriate for the A15 alloys, one would not 
describe the curves for 2kF/G = 0.6 as saturated. Even smaller negative curvature is 
obtainedfor2kF/Gnear0.6andsmaller (although, still representativeof strongelectron- 
phonon coupling) values of all. 

The following conclusions can be drawn from this study. 

(i) The simplest form of the diffraction model, incorporating Pippard-Ziman phonon 
ineffectiveness and reasonable parameters yields agreement with the strongly saturated 
r ( T ) / r ( B )  in A15 alloys. 

(ii) Similar results, including saturated r ( T ) / r ( e ) ,  are obtained in two and three 
dimensions. Thus, saturated resistivity curves do not require three-dimensional structure 
and lack of saturation in the ceramic superconductors cannot be attributed to their 
layered structure. 

(iii) The extreme linearity in the normal-state resistivity reported for the ceramic 
superconductors, especially for T < 8, cannot be explained by this model. However, 
the negative curvature exhibited in the resistivity versus temperature data of Johnson et 
aZ[25] for example, is consistent with results presented here for reasonable parameter 
choices. 

(iv) Significant Umklapp contributions to the resistivity can occur for relatively large 
phonon wavevectors (which are relatively immune to phonon ineffectiveness) for values 
of 2kF/G near 0.6. Therefore, relatively small negative deviations from linearity may 
result for strong electron-phonon coupling if 2kF/G is near 0.6. Thus, absence of 
saturation in the electrical resistivity does not preclude strong electron-phonon coupling. 
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